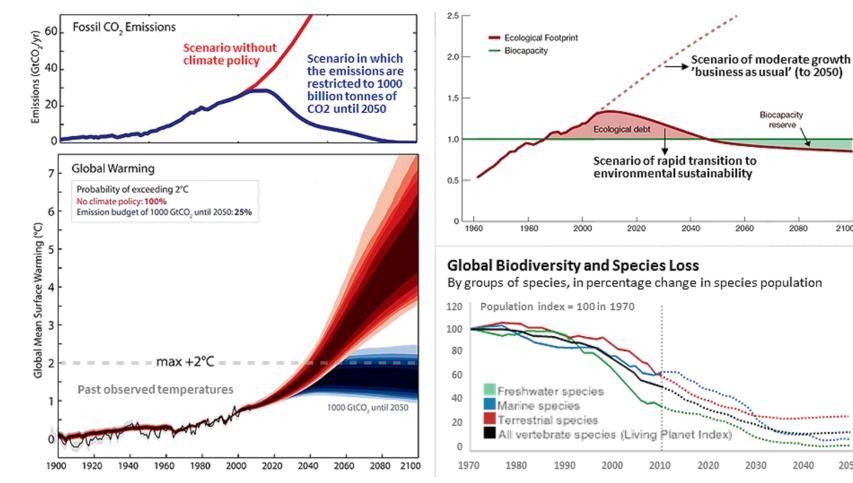
SAREP Sahara Renaissance Project



Global Challenges

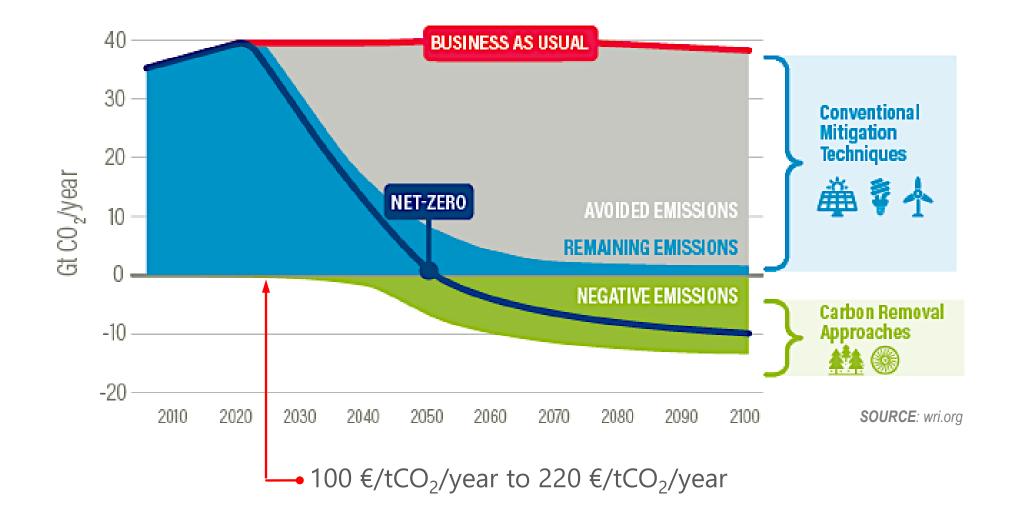
Global Warming and Carbon Emissions

By scenarios of emissions, in gigatons of CO2 and temperatures

Global Biocapacity and Ecological Footprint

By scenarios of ecological footprints, in number of Earths needed

Global Poverty and Migration Crisis


2100

2050

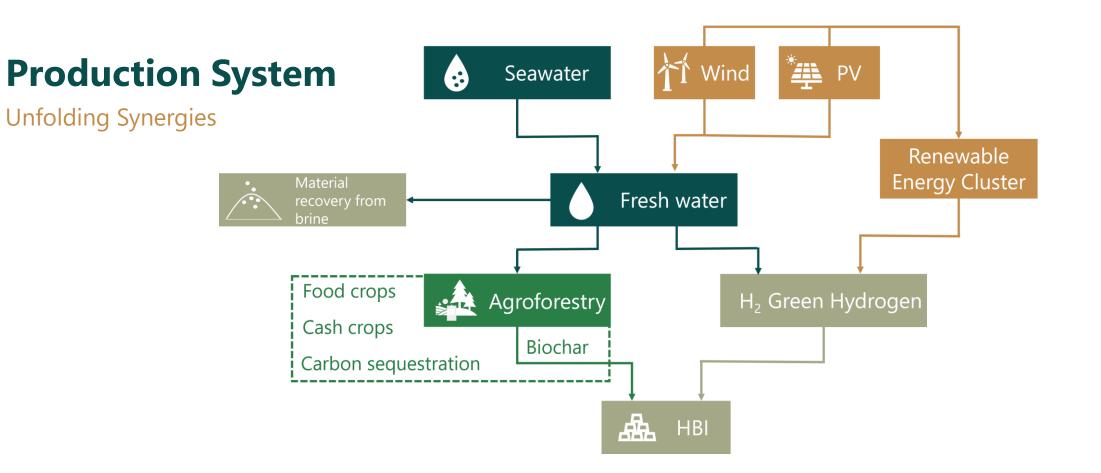
Sources: Institute for Atmospheric and Climate Science (IACETH), World Wide Fund for Nature (WWF), Zoological Society of London (ZSL), United Nations Environment Programme's World Conservation Monitoring Centre (UNEP-WCMC), Global Footprint Network (GFN).

The international relevance of Carbon removal

THIS AREA COULD BE A GREEN CARBON STORAGE AND (BIO) OIL PRODUCING LAND

- Storing up to 130 t CO₂/ha/year⁻
- Producing approx. 2,000 litre biofuel/ha/year
- Producing up to 80 t dry matter woody biomass/year/ha
- Generating 2,000 jobs per 10,000 ha

Soil carbon sequestration



- Soil carbon sequestration (SCS) describes methods of soil cultivation which increases the organic carbon content of soil, by capturing atmospheric CO₂
- Soils contain approx. 2,600 billion tonnes of carbon. This is roughly three times more than in the atmosphere
- Small changes in carbon storage in soil can have a massive impact on CO₂ concentration in the atmosphere

Desert soils as carbon storage can be a game changer!

Outlook

Objectives

Green Business Opportunities

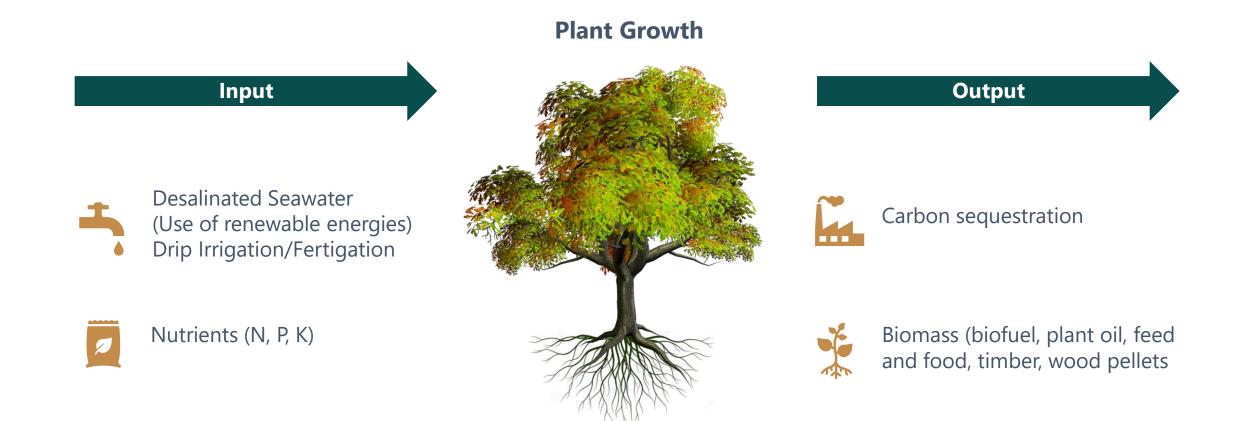
- Mobilizing Private Investments
- Offering a Competitive Product Portfolio

Climate Change Mitigation & Adaptation

- Initiating Large-Scale Carbon Sequestration
- Industry-Scale Biomass Production
- Indsutry Scale Hydrogen for local use and export

Regional Development

- Enhancing Food, Water, Energy Security
- Creating Jobs and Perspectives
- Migration Mitigation


Biomass products for industry

 Biofuel, Pellets, Timber, Protein, Biochar, Cash crops

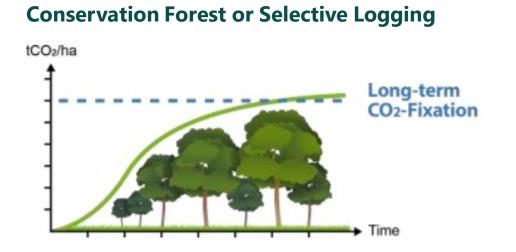
Solution Overview | Greening the Desert

https://www.exot-nutz-zier.de/images/prod_images/Jatropha_curcas2.jpg Prof. Klaus Becker, Universität Hohenheim

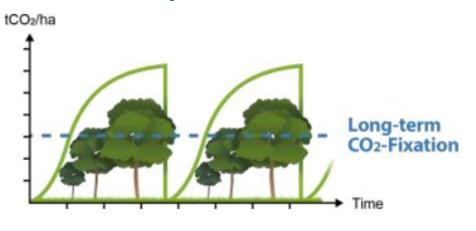
Up to 6t of nuts per ha = up to 2,000 liter of oil and 4t of presscake

Plus carbon removal potential of approx. 25 t CO₂/ha/year

10,000 ha yield


- 20,000 t oil/year
- 250,000 t CO₂/year
- 20,000 t protein /year
- 6,000 t biochar/year

CO₂-Fixation



Rotation Forestry

CFMU, long_term = $\frac{\sum_{t=1}^{T} CFMU, t}{T}$

CFMU, long-term = [tCO2/ha] Long-term <u>CO2-fixation</u> of a <u>MU</u>

CFMU, t = [tCO2/ha] CO2-fixation of a MU in year t

T= [] Number of years between the planting start and the end of the crediting period

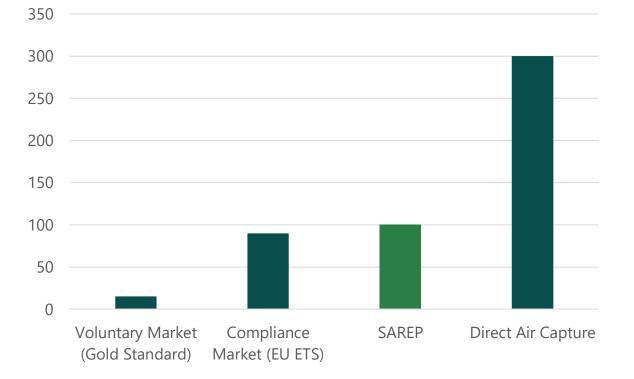
T = 1, 2, 3, ... Years

Source: https://globalgoals.goldstandard.org/standards/403 V1.0 LUF AR-Methodology-GHGs-emission-reduction-and-Sequestration-Methodology.pdf Logging wood for pellet production falls under rotation forestry

Financial Aspects | Assumptions

Carbon certificate price

• 100 €/t


WACC

2%

Accrediting period

30 years

Carbon Offset Price (€/t CO₂) 2023

650 ha Agroforestry | 60 Mill. € Investment

Key Facts

- 20,000 m³/d Desalination capacity
- 450 ha Prosopis
- 150 ha Jatropha curcas / Moringa oleifera
- 50 ha Staple food
- Application of approved technologies that are available on the market!

Proof of Concept | Financial Aspects

Simplified Overview

CAPEX: 60,000,000€

OPEX: 3,500,000€

- Workers: 500,000€
- Technical OPEX: 1,800,000€
- Interest: 1,200,000€

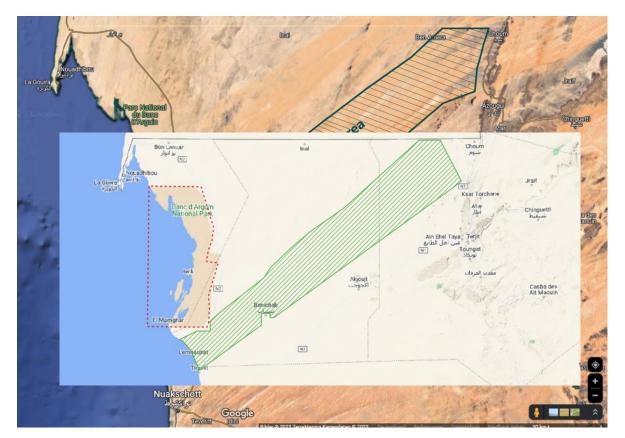
Revenues: 6,375,000€

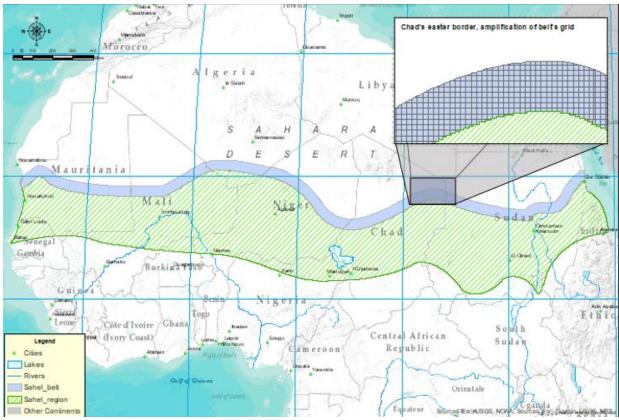
- Carbon certificates trees: 5,400,000€
- Carbon certificates Jatropha: 375,000€
- Vegetable oil, food crops: 600,000€

Nota bene: In the first three years, revenues could only be made by certifying sequestration during growth phase or by trading carbon sequestration futures.

KPIs:

NPV: 11,947,104€ IRR: 2.8% PBP: 18 years


Outlook



Initial Area Coast of Mauritania (2,000,000 ha)

Long-Term Vision

Mauritania – Mali – Algeria – Niger – Chad -Sudan

Initial Area Test plot 650 ha

Capacity Land [ha]	650
Capacity Water [m³/d]	20,000
Reverse Osmosis [€]	35,000,000
Energy [€]	10,000,000
Back-up (off-grid) [€]	5,000,000
Agriculture & Infrasturcture [€]	4,225,000
Development Capital [€]	5,775,000
Total Capital Demand [€]	60,000,000
LCoW [€/m³]	0.7-0.8
IRR [%]	2.8
PBP [a]	18.1
NPV [€]	12,000,000

Long-Term Vision

1st stage of expansion 65,000 ha

Capacity Land [ha]	65,000
Capacity Water [m³/d]	2,000,000
Reverse Osmosis [€]	1,750,000,000
Energy [€]	500,000,000
Back-up (off-grid) [€]	250,000,000
Agriculture & Infrasturcture [€]	422,500,000
Development Capital [€]	
Total Capital Demand [€]	2,922,500,000
LCoW [€/m³]	0.3-0.4
IRR [%]	11.9
PBP [a]	3.3
NPV [€]	2,270,000,000

Objectives


Food security and regional development through carbon removal, climate mitigation and adaptation

- Store carbon in soil
- Provide jobs and education to African society
- Organize food self-sufficiency for Africa
- Produce green Hydrogen for local use and export
- Produce green electricity and fuels for domestic consumption
- Offer technology opportunities and added value to the African continent
- Provide non fossil carbon for material use
- Provide plant oil substituting diesel and heavy fuel oil

Proposed Stakeholder Structure

Core Team

Prof. Dr. Peter Heck Project Lead, Managing Director of IfaS

Dr. Gerhard Ohlde Agroforestry Expert, Project Manager, IfaS

Dipl.-Ing. Joachim Käufler Seawater Desalination Expert, CEO, Synlift Industrial Products GmbH & Co. KG

Dipl.-Ing. Thomas Neu Mining & Steel Production Expert, proG.E.O. Ingenieursgesellschaft mbH

Mohamed Abdoullah Ebnou

On-Site Project Implementation, Engineering and Global Consulting, Mauritania

Partners from Industry and Academia

Johan Tijms Drip Irrigation System Expert, Tijms Trading International BV

Altinus Klaassen Agriculture Machinery Trading and Project Development, Attrotrading Africa BV

Dr. Klaus Becker Jatropha Expert, Hohenheim University

George Francis Jatropha Expert, CEO, Jatropower AG

Timeline

2023

SAREP Conference

Objective: Get-together of Political leaders, decision makers, experts from academia and experienced professionals

Outcome: Memorandum of Understanding to form the SAREP Development Initiative

2024

Test Plot Development

Objective: Demonstration of the project's feasibility, finetuning of the system

Outcome: Increasing the network of potential investors and customers

2025

Scale-Up

Objective: Development of 200 10,000 ha plots, realizing economies of scale

Outcome: Fully unfolded project impacts and benefits

- SAREP uses state of the art technologies to solve pressing worldwide problems
- Solar and Wind powered desalinization creates **infinite** water resources at affordable costs
- The water land solar energy nexus creates carbon storage and green carbon production potentials in industrial dimensions
- SAREP offers large scale opportunities to produce "**sustainable" steel** for local use (HBI) or export
- SAREP offers a sustainable economic and social potential for **local people and migrating refugees**

Green Business Model for Carbon Storage, Poverty Alleviation, GHG neutral Steel Production and Food Security

Contact

SYNLIF industrial products

IfaS

Institute for Applied Material Flow Management (IfaS) Trier University of Applied Sciences / Environmental Campus Birkenfeld P.O. Box 1380 55761 Birkenfeld Germany

Prof. Dr. Peter Heck Phone: +49 6782 17 - 12 21

E-mail: p.heck@umwelt-campus.de

Website: www.stoffstrom.org

Dr. Gerhard Ohlde

Phone: +49 6782 17 - 2623 E-mail: g.ohlde@umwelt-campus.de

Thank you for your time and attention!