

SYNLIFT industrial products

Sahara Renaissance Project

THE TREES

SAREP

Dr. Gerhard Ohlde

Plant Growth

Trees' functions

- Reduce evaporation
- Reduce temperature

TREE CULTIVATION

- Year-round irrigation to utilize genetic plant potential
 - \rightarrow water supply
 - \rightarrow fertigation
- High DM-yields
- Species mix
 - \rightarrow phytosanitary precaution
 - \rightarrow fire lines
 - \rightarrow wind protection in height levels
 - \rightarrow resistant to high temperature
 - ightarrow resistant to mild frosts

NOT IMPORTANT

- \rightarrow drought resistance
- \rightarrow resistance to dry seasons

CHOICE OF TREE SPECIES

- Subject of growth trials in starter plot phase
 - \rightarrow identify the ranking of species under local conditions
 - \rightarrow identify high DM-yield cultivars
 - → identify perennial tree crops for the inside of farm perimeter (nuts, fruit, fodder for example)
- Long-term performance counts
 - → indigenous species → imported species
- Fast growers with increased water requirements excluded, like Pennisetum spp. or bamboo. Target is C-removal combined with wood use-options.

CHALLENGE TO SELECT TREE SPECIES

- Comparative trials lack inclusion of the subsoil parts / roots.
- Most trials were conducted under rainfed conditions.
- Important trials focus on adverse soil-pH-tolerance rather than yield.
- Important trials were conducted under 8 months duration of dry season.
- Important trials were conducted using non-specific / wild germplasm.

Tree DM-yields, tDM/ha/a

	Prosopis juliflora	Acacia nilotica	Casuarina equisetifolia	Eucalyptus tereticornis	Eucalyptus gomphocep hala	Euc. camaldulen sis
Singh, 1995*	77.8	64.6	56.3	44.6		
Singh, 2010**	70.6	63.5	52.6			
Ohlde, 2019***				53.2	70.3	51.1
Maghembe, 1983****	37 - 125 Av. 81.2					

*+ **: North India, 817 map, 8 months dry season, soil pH 8.5, no root-DM measurement.

* Gurbachan Singh, 1995, Practices for raising Prosopis plantations in saline soils <u>https://www.fao.org/3/ad321e/ad321e08.htm</u> Central Soil Salinity Research Institute, Karnal 132001, India

** Y.P. Singh • Gurbachan Singh • D. K. Sharma, 2010, Biomass and bio-energy production of ten multipurpose tree species planted in sodic soils of indo-gangetic plains, Journal of Forestry Research (2010) 21(1): 19–24, DOI 10.1007/s11676-010-0003-5

*** Ohlde et al., 2019, Biomass Production and Carbon Sequestration by Cultivation of Trees under Hyperarid Conditions using Desalinated Seawater (Sewage Water), Journal of Agriculture Food and Development, 2019, 5, 33-42

**** Maghembe et al., 1983, Biomass and nutrient accumulation in young Prosopis Juliflora at Mombasa, Kenya; Agroforestry Systems 1: 313-321; at map 1220, 4 months dry; no roots measurements

*,**,**** : no uninterrupted water supply

Prosopis juliflora Wikipedia.org

https://keyserver.lucidcentral.org/ Acacia nilotica

Casuarina equisetifolia etsy.com

Pinterest.com

Eucalyptus tereticornis Eucalyptus gomphocephala australianseed.com

Eucalyptus camaldulensis researchgate.net

Tamarix aphylla powo.science.kew.org

Desert greening after 2 – 3 years

Eucalyptus camaldulensis 2 years after planting

Shelterbelt seen from the desert

© Institute for Applied Material Flow Management (IfaS)

Thank you for your time and attention!

© Institute for Applied Material Flow Management (IfaS)