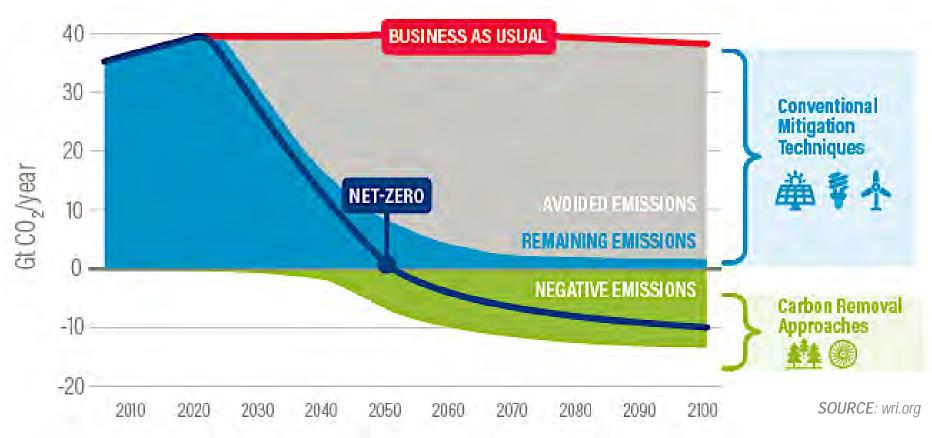
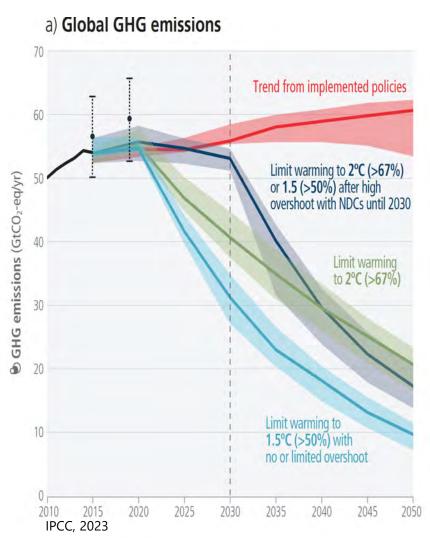


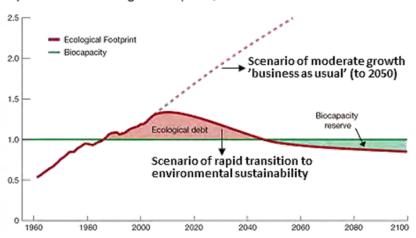
SAREP

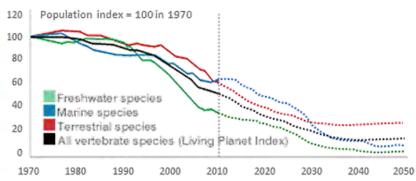
Sahara Renaissance Project

Prof. Dr. Peter Heck CEO SAREP, CEO IfaS


ICEW 6.11.2024


The international relevance of Carbon removal

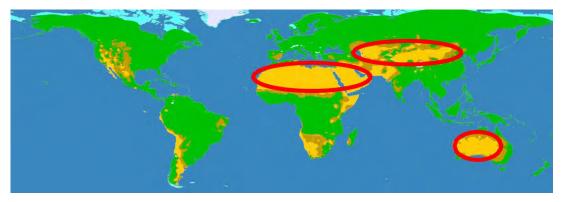

Global Challenges: insufficient policy but room for private investment


Global Biocapacity and Ecological Footprint

By scenarios of ecological footprints, in number of Earths needed

Global Biodiversity and Species Loss

By groups of species, in percentage change in species population


Global Poverty and Migration Crisis

- Trade GHG emissions
- Merge biodiversity & ecotourism
- Supply biogenic materials

Sources: Institute for Atmospheric and Climate Science (IACETH), World Wide Fund for Nature (WWF), Zoological Society of London (ZSL), United Nations Environment Programme's World Conservation Monitoring Centre (UNEP-WCMC), Global Footprint Network (GFN).

Soil carbon sequestration

- Soil carbon sequestration (SCS) describes methods of soil cultivation which increases the organic carbon content of soil, by capturing atmospheric CO₂
- Soils contain approx. 2,600 billion tonnes of carbon. This is roughly three times more than in the atmosphere
- Small changes in carbon storage in soil can have a massive impact on
 CO₂ concentration in the atmosphere

Desert soils as carbon storage can be a game changer!

THIS AREA COULD BE A GREEN CARBON STORAGE AND BIOMASS PRODUCING LAND

- Storing up to 160 t CO₂/ha/year⁻
- Producing approx. 2,000 litre biofuel/ha/year
- Producing up to 80 t dry matter woody biomass/year/ha
- Generating 2,000 jobs per 10,000 ha

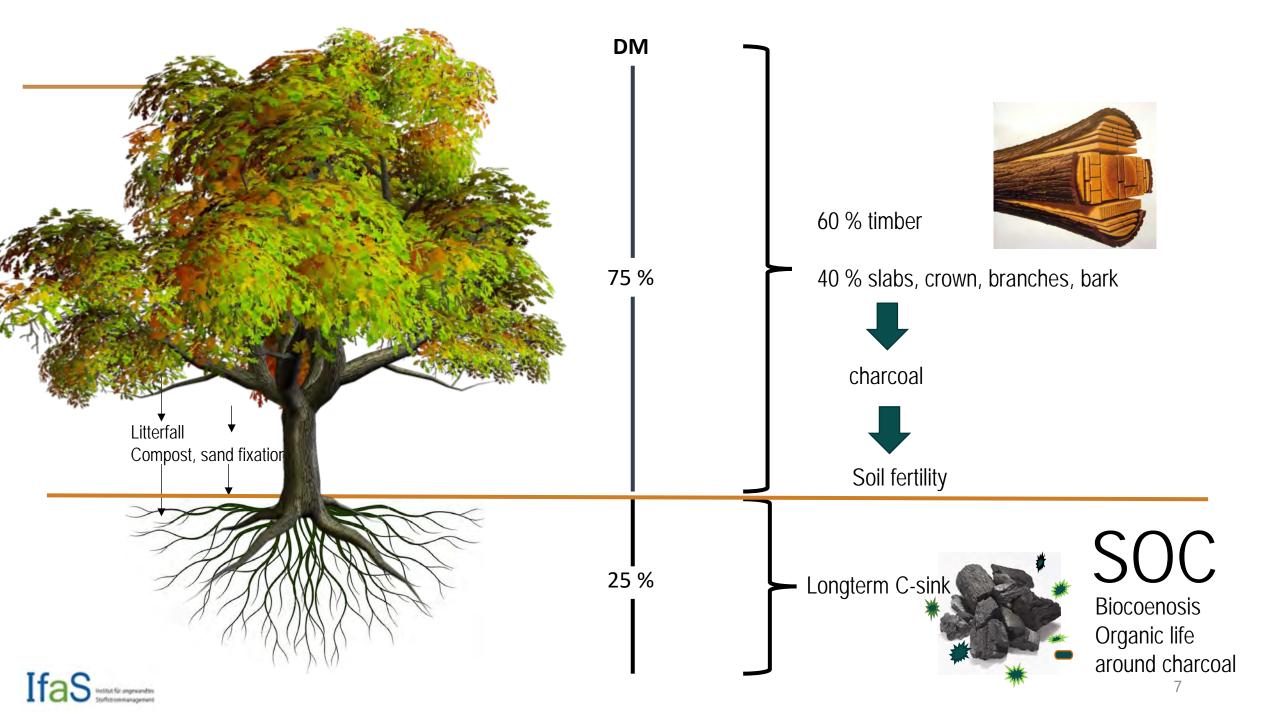
Solution Overview | Greening the Desert

Plant Growth

Input

Desalinated Seawater (Use of renewable energies) Drip Irrigation/Fertigation

Nutrients (N, P, K)


Output

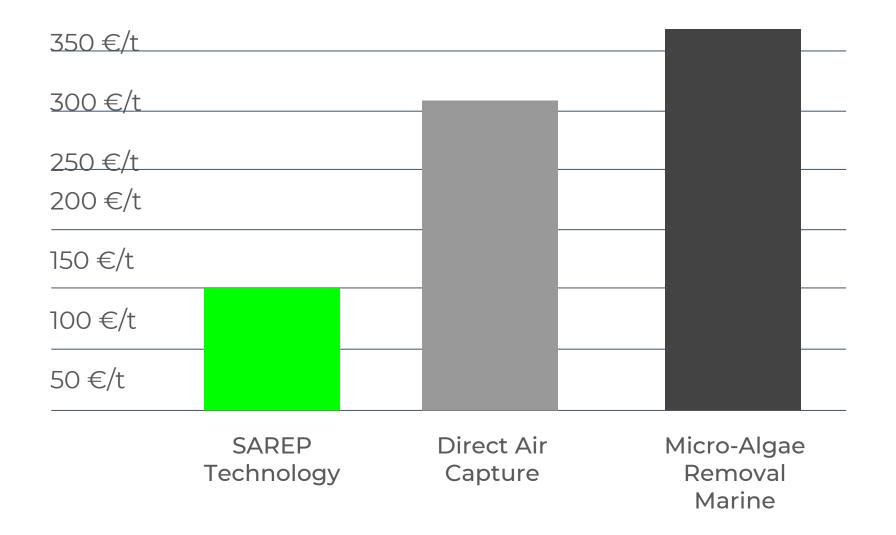
Carbon sequestration

Biomass (biofuel, plant oil, feed and food, timber, wood pellets, biochar etc.)

Pithecellobium dulce

Vachellia tortilis

Prosopis juliflora

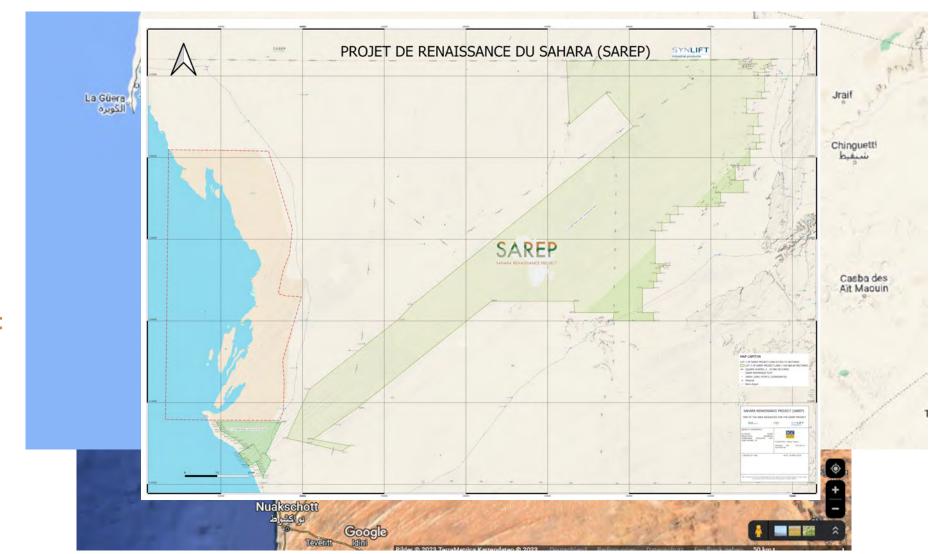

Acacia africans

How the desert could look like: impressions from Nouakchot

SAREP Technology is 3x less expensive then existing solutions Carbon Offset Price €/t CO2 in 2023

SAREP Technology is:

- 3x less expensive than existing solutions
- is highly scalable, due to little to non proprietary technology
- thus presents the most efficient way to capture CO2 on scale


Why Mauretania?

- Mauretania one of the most seriously affected countries by climate change
- Mauretania suffering from refugee crisis
- Mauretania as a starting point for illegal migration to Europe
- Mauretania with logistical options for mineral resources, hydrogen and biogenic commodities
- Mauretania with a huge potential in water, renewable energies and land

Côte de la Mauritanie (2,000,000 ha)

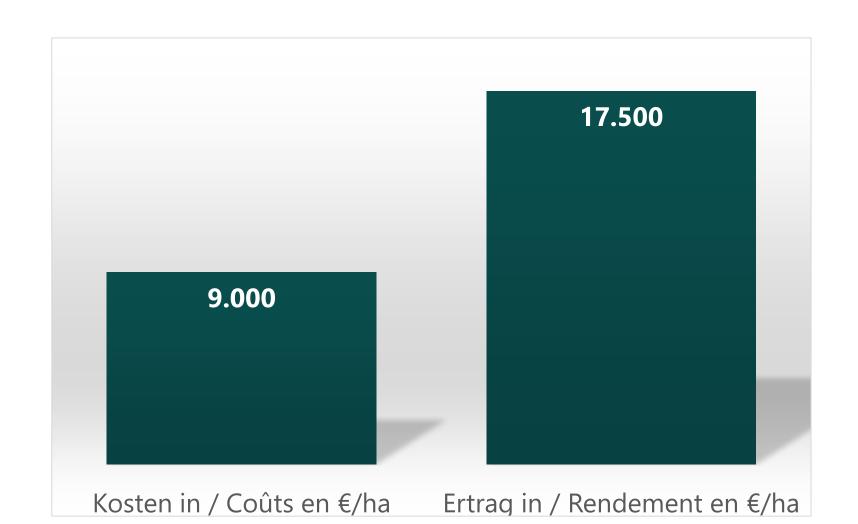
Initial Project Region

Example: Jatropha curcas | High yield through fertigation

https://www.exot-nutz-zier.de/images/prod_images/Jatropha_curcas2.jpg Prof. Klaus Becker, Universität Hohenheim

Up to 6t of nuts per ha = up to 2,000 liter of oil and 4t of presscake Plus carbon removal potential of approx. 25 t $CO_2/ha/year$

10,000 ha yield


- 20,000 t oil/year
- 250,000 t CO₂/year
- 20,000 t protein /year
- 6,000 t biochar/year

Onion farming: growing demand in Africa approx. 40 kg/cap/year

SAREP onion business case

Phase 1 "Reference plot" LCoW 1,60 €/m³

SAREP SAHARA RENAISSANCE PROJECT

10 Mio. € Investment

Key facts:

- 1,000 m³/d desalinated water
- 25 ha Prosopis juliflora etc.
- 5 ha onions and staple food for local demand
- 5 ha parc with showroom, boarding house, education center
- 20 trainees, 2 managers
- EIA and social impact study

Phase 2 "Pilot": LCoW 0,69 €/m³

SAREP SAHARA RENAISSANCE PROJECT

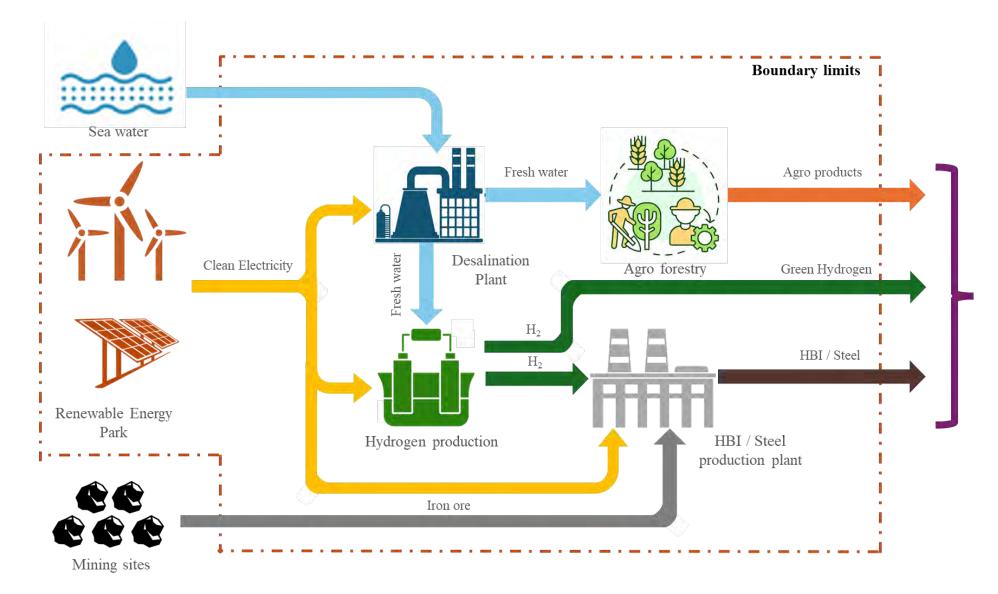
90 Mio. € Investment

Key facts:

- 20,000 m³/d desalinated water
- 10,000 m³ sold to Nouakchot (0,85€/m³)
- 300 ha Prosopis juliflora etc.
- 40 ha onions and staple food for local demand
- 10 ha Jatropha curcas / Moringa oleifera

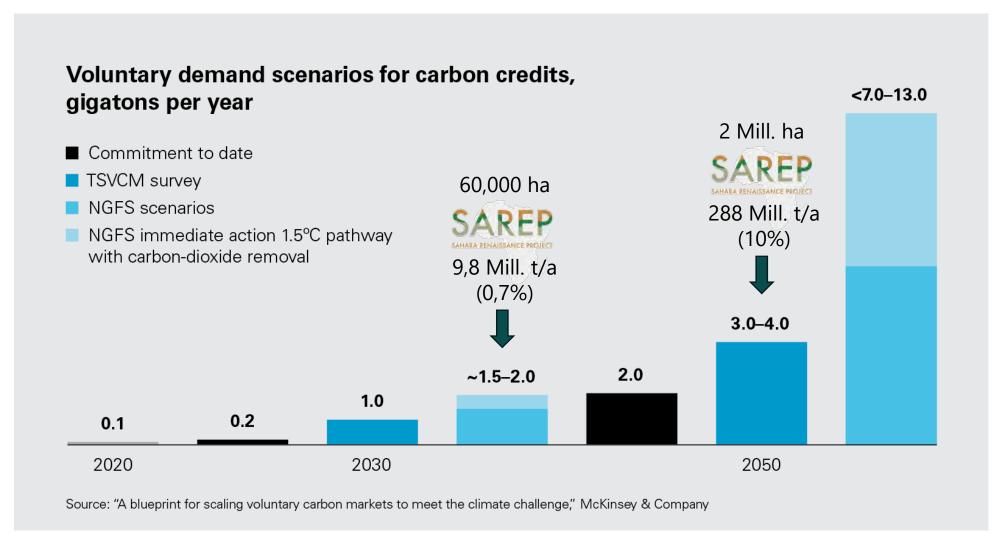
Phase 3 "1st Standard Plot" – 65,000 ha; LCOW 0,40€/m³

Industrial Commercialisation up to 2 Mio. ha



SAREP harbour – Potential for Mauritania

Business Model – Unfolding Synergies



Products to regional and international market

Carbon Removal Certificates Demand in billion tons

EIB predicts*: 183 USD/tCO in 2025 277 USD/tCO in 2030

Whitecase predicts: 50 USD/tCO in 2030 300 USD/tCO in 2050

CO₂ Price Development

Source	Issuance 2020 (million t CO₂/a)	Demand 2030 (million t CO₂/a)	Demand 2050 (million t CO₂/a)	Price 2030 (\$/tCO ₂)	Market Volume 2030 (billion \$/a)
Credit Suisse	282	1,000 5,000<		50-100	50-100
TSVCM	282	1,000-2,000	7,000-13,000	5-100	30-180
MSCI Trove Research	282	500-1,500		20-50	10-40
Bloomberg NEF	282	1,000	5,000<	47-224	190
McKinsey	282	1,000-2,000	6,000-10,000	40-80	40-80
BCG	282	500 -1,500		20-40	10-40
SwissRe	-	<u> </u>	÷.	200	3
World Bank		1	- ÷	61-122	-
EIB		Harrie Constraint	3	250	1

Sources: Credit Suisse (2022), TSVCM (2021), Trove Research (2021), Bloomberg NEF (2022), McKinsey & Company (2023), (BCG & Shell, 2023), SwissRe (2023), World Bank (2023), EIB (2020)

Green Business Opportunities

- Mobilizing Private Investments
- Offering a Competitive Product Portfolio

Climate Change Mitigation & Adaptation

- Initiating Large-Scale Carbon Sequestration
- Industry-Scale Biomass Production
- Industry Scale Hydrogen for local use and export

Regional Development

- Enhancing Food, Water, Energy Security
- Creating Jobs and Life Perspectives
- Migration Mitigation

Biomass products for industry

 Biofuel, Pellets, Timber, Protein, Biochar, Cash crops

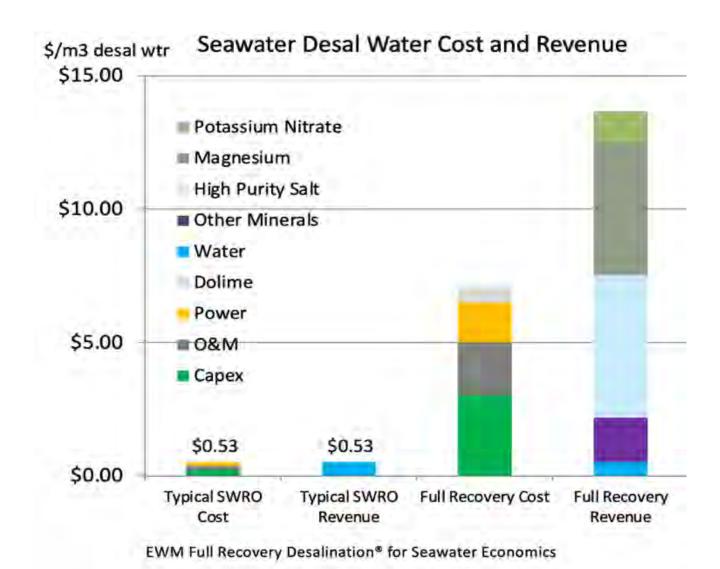
Economic analysis

	·	bud	get figues	extrapolated
Parameter	Unit	Pilot plot	Standard plot	Target dimension
Construction time	а	4	4	10
Water capacity	m³/d	20,000	2,000,000	54,000,000
Water supply to Nouakchot	m³/d	10,000	200,000	200,000
Levelized Cost of Water	€/m³	0.69	0.38	0.26
Water Sales Price	€/m³	0.85	0.85	0.85
Afforestation	ha	339	70,000	1,960,000
Land use cost	€/ha	0.0	0.0	0.0
CO ₂ removal	tCO₂/a	48,000	9,590,000	268,520,000
CAPEX	k€	76,000	5,789,000	153,987,400
Renewable Energy (PV+Wind)	k€	18,903	1,439,861	38,300,313
Reverse Osmosis	k€	39,000	2,970,671	79,019,850
Irrigation System	k€	6,945	529,036	14,072,353
Afforestation	k€	5,055	385,037	10,241,980
Training Center / SAREP Headquarter	k€	6,185	471,131	12,532,094
Working Capital	k€	8,981	170,000	4,522,000
Trade Working Capital	k€	1,200	22,715	604,222
Development Cost	k€	7,781	147,285	3,917,778
CO ₂ start price	€/tCO ₂	65	85	85
CO ₂ price inflation	p.a.	5%	5%	5%
EBITDA-Margin		33.7%	54.2%	>60%
WACC		3.9%	8.4%	12.0%
IRR		4.4%	9.2%	>12%
PBP	а	29	27	<25

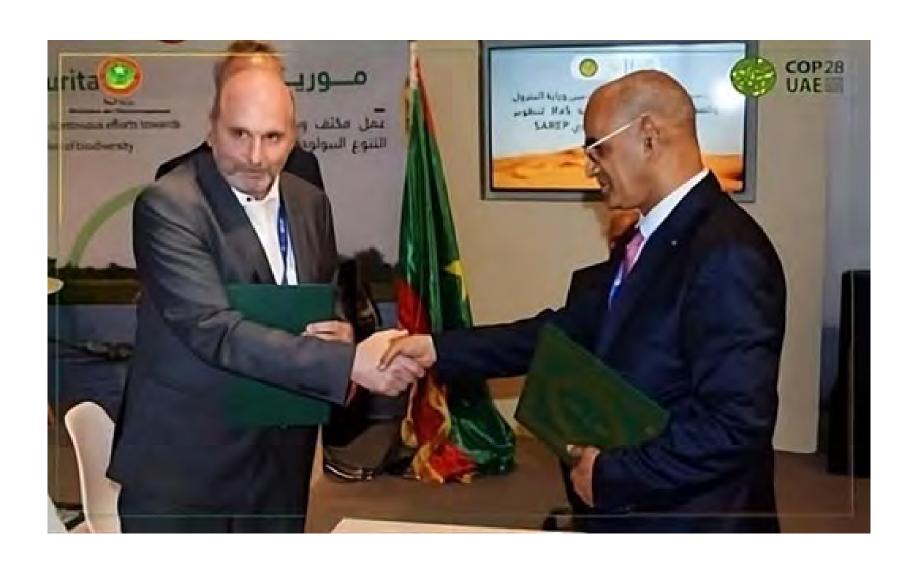
- SAREP <u>at scale</u> constitutes a profitable investment option!
- SAREPs financial result oscillates from rather low (4%) to high (12%) IRR, depending on size (economy of scale) and the behaviour (development) of the most sensitive variables, with the top 3 being ranked:
 - 1. Yield expectation (carbon removal performance)
 - 2. Levelized Cost of Water (and/or water consumption per ha/a)
 - 3. Carbon certificate (and/or commodity) price

Food security and regional development through carbon removal, climate mitigation and adaptation

- Store carbon in soil
- Provide jobs and education to African society
- Organize food self-sufficiency for Africa
- Produce green Hydrogen for local use and export
- Produce green electricity and fuels for domestic consumption
- Offer technology opportunities and added value to the African continent
- Provide non fossil carbon for material use
- Provide plant oil substituting diesel and heavy fuel oil

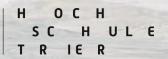


There is more to brine....


Using brine in salt lake to cultivate Salicornia bigelovii

Source: http://www.queller.org/wuestenspargel/

COP28 Dubai - signing of MoU



- SAREP uses state of the art technologies to solve pressing worldwide problems
- SAREP offers affordable potable water and food for local population
- Solar and Wind powered desalinization creates infinite water resources at affordable costs
- The water land solar energy nexus creates carbon storage and green carbon production potentials in industrial dimensions
- SAREP offers large scale opportunities to produce "**sustainable" steel** for local use (HBI) or export
- SAREP offers employment and education in for local people and migrating refugees

Green business model for climate mitigation, carbon storage, poverty alleviation, GHG neutral steel production and food security

IfaS

Institute for Applied Material Flow Management (IfaS)
Trier University of Applied Sciences / Environmental Campus Birkenfeld
P.O. Box 1380
55761 Birkenfeld
Germany

Prof. Dr. Peter Heck

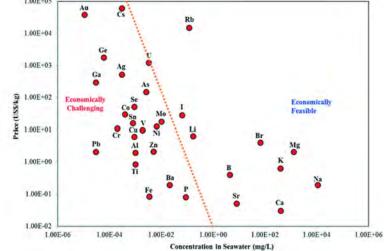
Phone: +49 6782 17 - 12 21

e-mail: p.heck@umwelt-campus.de

Website: https://sarep.de

www.stoffstrom.org

Dr. Felix Flesch


Phone: +49 6782 17 – 26 23

e-mail: f.flesch@umwelt-campus.de

Solubilities of selected salts in brine

Compound	Solubility in g/100 ml H ₂ O at RT	1.00E+05 Au Cs Rb
CaCO ₃	0.0015	1.00E+04 Ge 1.00E+03
MgCO ₃	0.0139	G2 As As 2 1.00E+02 Economically Se
CaSO ₄ • 2H ₂ O	0.26	Challenging Co Mo I U Sn V Ni U
K ₂ SO ₄	11.1	1.00E+00
KMg(SO ₄)Cl • 3H ₂ O, Kainite	20.0	1.00E-01 Fe P Sr
K ₂ Mg(SO ₄) ₂ • 6H ₂ O, Schoenite	25.0	1.00E-02 1.00E-06 1.00E-04 1.00E-02 1.00E+00 Concentration in Seawate
KCI, Silvinite	35.5	
NaCl	35.7	
Na ₂ SO ₄	44.0	
MgCl ₂	56.0	
KMgCl ₃ •6H ₂ O, Carnalite	64.5	
CaCl ₂	81.3	Source: Konners Osw
LiCl	84.5	Source: Keppers, Osw Technologies, 2022
SrCl ₂ •6H ₂ O (0°C)	106.0	

swald; K-Utec AG Salt